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Abstract

Undermatching and overmatching in concurrent schedules of reinforcement have been traditionally described as changes in the slope of the
Generalized Matching Law function. More recently, it has been suggested that deviations from strict matching may be better described as following
a policy of mostly fixing on the preferred schedule, and occasionally sampling the alternative schedule. So far, no model of local performance
predicts the global outcome of this policy. We describe one such model; it assumes immediate and long-term effects of reinforcement on local
performance. The model assumes long-term effects as changes in the internal state of the organism. Formally, the model is analogous to the Axiom
of Repeated Choice [Lefebvre, V.A., 2004. Bipolarity, choice, and entro-field. In: Proceedings of the Eighth World Multi-Conference on Systemics,
Cybernetics and Informatics, vol. IV, pp. 95–99].
© 2008 Elsevier B.V. All rights reserved.
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The Matching Law is a fundamental concept in behavioral
choice theory (Herrnstein, 1961; for a review, see Davison and
McCarthy, 1988). It states that the allocation of behavior across
alternatives matches the distribution of obtained reinforcers
(De Villiers and Herrnstein, 1976); mathematically, it may be
expressed as

B1

B1 + B2
= r1

r1 + r2
, (1)

or in its equivalent ratio form (Baum and Rachlin, 1969):

B1

B2
= r1

r2
, (1′)

where B1 and B2 are the rates of responding on each alternative,
and r1 and r2 are the rates of reinforcement obtained from the
corresponding alternatives.

Extensive empirical research on animal and human choice has
shown that experimental subjects systematically deviate from
“strict” matching (Davison and McCarthy, 1988). To account
for these deviations, Baum (1974) suggested a generalization of
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Eq. (1′) known as the Generalized Matching Law (GML):

log
B1

B2
= a log

r1

r2
+ log b. (2)

Parameter a represents the sensitivity of choice to relative rate
of reinforcement (Lobb and Davison, 1975), and b is the bias
towards schedule 1 that is not due to r1 or r2. If a > 1, rates of
reinforcement are overmatched by choice; if a < 1, rates of rein-
forcement are undermatched. Undermatching is prevalent across
studies (Davison and McCarthy, 1988), although overmatching
is occasionally observed (Aparicio, 2001).

Much work has been done in the last three decades to
specify local processes that would yield matching in the long
run (Davison and Jenkins, 1985; Herrnstein, 1982; MacDonall,
1999; Staddon and Motheral, 1978; Wearden, 1983). Consistent
with the global pattern described by GML (Eq. (2)), these local
models assume that the function that relates choice to reinforce-
ment – the matching function – is continuous. Recent evidence,
however, has questioned this assumption.

1. Discontinuity in the matching function:
fix-and-sample patterns of choice

The Matching Law has been typically demonstrated using
concurrent variable-interval variable-interval (Conc VI VI)
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schedules of reinforcement. In this procedure, subjects contin-
uously choose between two alternatives, each of which delivers
rewards at a programmed rate but with no periodicity. By
examining local patterns of choice in Conc VI VI, Baum et
al. (1999) uncovered a “fix-and-sample” pattern in pigeon’s
choices: Pigeons generally responded on the alternative that
yielded more reinforcers (rich schedule) and occasionally made
a few responses on the alternative that yielded fewer reinforcers
(lean schedule); whereas responding on the rich schedule was
sensitive to relative rate of reinforcement, responding on the
lean schedule was not. This fix-and-sample pattern has also been
detected in rhesus monkeys (Lau and Glimcher, 2005) and rats
(Aparicio and Baum, 2005).

The fix-and-sample pattern implies a discontinuity in the
matching function where schedules change from lean to rich
and vice versa. To illustrate this point, consider what happens
when a schedule switches from being lean to being rich. While
the schedule was lean, the duration of each visit was fixed, say,
to four keypecks on the average, regardless of its relative rate
of reinforcement. Now that it is the rich schedule, the dura-
tion of each visit is sensitive to rate of reinforcement. When the
rich schedule is only slightly richer than the lean schedule, sen-
sitivity to rate of reinforcement may drop visit lengths below
four keypecks or may boost them above that number, yielding
respectively a step down or up in the matching function.

To account for the fix-and-sample pattern observed in their
experiment and for the discontinuity that it implies for the match-
ing function, Baum et al. (1999) suggested that GML operates
with no sensitivity parameter on the ratio of reinforcers obtained
from the rich (rR) and lean (rL) schedules (see also Baum, 2002):

BR

BL

= bR

rR

rL
, (3)

or, equivalently,

log
BR

BL

= log
rR

rL
+ log bR, (3′)

where BR and BL are the rates of responding on the rich and
lean schedules, respectively, and bR is the bias towards the rich
alternative. Note that the value of bR can be greater than 1,
smaller than 1, or equal to 1, so log bR can be either positive
or negative or zero. In this formulation the matching function
intercepts the ordinate at log bR. At this point, rR = rL, so the
distinction between rich and lean is meaningless; if rR is further
reduced, however, the rich schedule to the right of the ordinate
becomes the lean schedule, and vice versa. Thus, when Eq. (3′)
is plotted with the ratio of reinforcement rates (log[r1/r2]) on
the abscissa, a discontinuity is observed at the ordinate.1 Two
possible discontinuities – step down or up – are described by the
ideal matching functions in the top panels of Fig. 1; the step-

1 In Baum et al.’s (1999) model, matching is discontinuous at log(BR/BL) = 0
(preference indifference), and not necessarily when reinforcement rates are
equal. This is because Baum et al. postulated their model as GML operating
on the ratio of reinforcers obtained from the preferred and nonpreferred sched-
ules. Eq. (3) diverges from Baum et al.’s to the extent that leaner schedules are
preferred.

down pattern (left) corresponds to undermatching, whereas the
step-up pattern corresponds to overmatching.

To the left of the ordinate in the top panels of Fig. 1, alternative
1 is lean and alternative 2 is rich; to the right of the ordinate,
alternative 1 is rich and alternative 2 is lean. Tracing Eq. (3′) from
left to right, the function breaks at log b′

R=2, which is log bR when
alternative 2 is rich. The function then continues from log b′

R=1,
which is log bR when alternative 1 is rich. From Eq. (3), it may
be shown that b′

R=1 = −b′
R=2, as illustrated by the symmetry of

the discontinuity around the origin (Fig. 1, top panels). A more
general form of the model, which we call the fix-and-sample
(FS) model, assumes a bias b1 towards alternative 1, such that

bR=1 = b1 b′
R=1, bR=2 = b1 b′

R=2. (4)

Coefficient b1 allows the matching function to be shifted up or
down – not just symmetrically around the x-axis – to fit data. The
bottom panels of Fig. 1 illustrate the fit of the FS model to data,
based on the performance of one rat with two levels of effort
for changing over alternatives (Aparicio, 2001). The FS model
was implemented as Eq. (3′) with two free parameters: bR when
r1 < r2 (i.e., bR=1) and bR when r1 > r2 (i.e., bR=2). Log estimates
of bR=1 and bR=2 were obtained using the method of least squares,
and are shown in the bottom panels of Fig. 1; they can also be
seen, respectively, as the y-intercepts of the solid lines on the
right and left sides of each plot. Note that the discontinuities in
the fitted functions are not vertically centered on zero, but on a
negative number, indicating that b1 was negative—choice was
biased toward alternative 2.

It is not obvious how a discontinuity in behavior between
richer and leaner schedules can be incorporated to continuous-
function local models of matching without violating their
fundamental assumptions. The FS model (Eqs. (3′) and (4))
describe global patterns of behavior allocation, but it does not
explain why these equations must hold and does not specify
local choice mechanisms whose aggregated operation would
yield fix-and-sample patterns. We propose a hypothetical local
choice mechanism that is consistent with the FS model. The
mechanism is based on parsimonious assumptions of the internal
state of an organism, which are specified by the formal relation
between the system’s internal state, the environment’s influ-
ence, and the probability with which the system chooses each
alternative.

2. A model of bipolar choice

This model was first introduced to explain some phenomena
in human moral choice (Lefebvre, 1982, 1992). Consider the
following situation. A person is facing an alternative: to tell the
truth or to lie. Let the truth be “good” for this person and to lie
“bad.” In addition, for telling the truth the person would receive
$10 and for lying $10,000. This is an example of a situation in
which a choice has two aspects, one moral and one utilitarian.
In the moral aspect, the alternatives are bipolar. One of them can
be called the positive pole and the other the negative pole. In the
utilitarian aspect, the alternatives are assigned with numbers that
correspond to their utility. In this particular example, the negative
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Fig. 1. (Top panels) Ideal patterns given by Eq. (3′). The pattern on the left panel corresponds to the case when log bR < 0, i.e., undermatching. The pattern on the right
panel corresponds to the case when log bR > 0, i.e., overmatching. The dotted line corresponds to log bR = 0. (Bottom panels) Illustrative fitting of the Generalized
Matching Law (GML; Eq. (2)) and the fix-and-sample model (FS; Eqs. (3′) and (4)) to performance in concurrent variable-interval variable-interval (Conc VI VI)
schedules of reinforcement. Relative rates of responding are shown as a function of relative rates of reinforcement in one rat (#62) when response levers were
separated by a 30.5 cm barrier (left panel) and by a 45.7 cm barrier (adapted from Aparicio, 2001). The dashed line is the best fitting form of GML and the solid lines
are the best fitting form of FS. Fitted parameters are displayed for each model.

pole (lie) is more profitable than the positive pole (truth). We
cannot be certain of which alternative will be chosen, because
polarity and utility are inconsistent with each other. This is a
situation akin to the complex ambivalence self-control scenario
described by Rachlin (2000).

The formal model of bipolar choice was initially constructed
for predicting human choice in situations of this type; it may be
represented in the following equation:

X = x1

x1 + (1 − x1)x2
, 0 < x1 ≤ 1, 0 ≤ x2 ≤ 1. (5)

In this equation, X is the probability of choosing the positive
pole, x1 is the relative utility of the positive pole, and x2 is a
parameter characterizing the subject’s inner state, the value of
which is determined by a larger context. If x2 = 0 then X = 1, that
is, choice is completely based on the polarity of the alternatives;
if x2 = 1 then X = x1, that is, choice is completely based on the
utility of the alternatives. Thus, x2 is the relative decision weight
given to local considerations of utility (“what pays more now?”)
and to global considerations of “goodness” (“what is better in
the long run?”).

After the model of bipolar choice had been constructed, it
was found that it could also make predictions beyond the area of
moral choice. For example, it could explain a few psychophys-
ical phenomena, among them the non-linear relation between
magnitude and categorical estimations of the same physical
stimuli (length, weight, duration, area) (Lefebvre, 1992). The

model shed a new light on the asymmetry in evaluations given
by people of their acquaintances in using constructs of the type
strong-weak, fast-slow, etc. Experimental data have demon-
strated that the frequency of choosing a positive adjective was
equal to 0.62, not 0.5 as was expected; the model explained this
shift (Adams-Webber, 1997; Lefebvre, 1980). These results led
to the notion that the model expressed by Eq. (5) may describe
not only human choice but animal choice as well.

We hypothesized that choices in Conc VI VI have two aspects,
which may be called utilitarian and positive–negative. The util-
itarian aspect relates to the immediate preferences of the animal
at a local scale, and positive–negative aspects to the animal
behavior in a larger, global, time scale. We can rewrite Eq. (5)
as

1 − X

X
= x2

1 − x1

x1
, (6)

which allows us to see a parallel between the model of bipolar
choice and Eq. (3). Lean and rich alternatives may be assigned
with positive and negative polarity—the assignment criteria will
be discussed further below. For illustration, let the lean alterna-
tive be the positive pole and the rich alternative the negative
one:

X = BL

BR + BL

, x1 = rL

rR + rL
. (7)
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After substituting these values in Eq. (6) we obtain

BR

BL

= x2
rR

rL
. (8)

Eq. (8) is analogous to Eq. (3).

3. A new version of the model of bipolar choice

In this section, we demonstrate that Eq. (8) may be derived
from a few assumptions regarding local choice. Let us first repre-
sent the behavior of an organism in a situation of bipolar choice
as the following function:

X = Φ(x1, S), 0 < X ≤ 1, 0 < x1 ≤ 1, S ≥ 0. (9)

The values of variables X and x1 are interpreted as in the old
model: X is the long-term probability of an organism choosing
the positive alternative, and x1 is the instantaneous probabil-
ity with which the local environment instigates the organism
to choose the positive alternative. S is an internal variable that
expresses the organism’s preference for the positive alternative
at a global scale. Let us assume that the local impact of rein-
forcement is already established (e.g., animals are predisposed
to prefer more immediate rewards), whereas global preference
must be acquired. We assume that with x1 being constant and S
growing, the probability of choosing the positive pole, X, grows.
If there is no long-term preference, S = 0, the probability of
choosing a pole is completely determined by local influence:

Φ(x1, 0) = x1. (10)

The probability with which the system chooses the positive alter-
native when the internal variable is equal to S will be designated
as XS. To find function Φ(x1, S), we invoke one assumption,
which we called the Axiom of Repeated Choice:

When the internal variable grows from S to S + �S
(0 < �S < 1; �S is considered small) and x1 does not change,
the procedure of choice is as follows. First, the system makes
a preliminary choice with the probability of choosing the
positive alternative equal to XS. If the positive alternative is
chosen, the system realizes its choice. If the negative alter-
native is chosen, then, with a small probability equal to �S,
the system cancels its choice and repeats the procedure of
choice (with the probability of choosing the positive alterna-
tive equal to XS). The result of the repeated choice is realized
no matter which alternative is chosen. (Lefebvre, 2004)

The empirical basis of the Axiom of Repeated Choice is
incomplete, and thus it should be deemed as a hypothesis.
Nonetheless, the phenomenon of repeated choice was observed
in subjective estimation of stimulus intensity on a linear scale
(Poulton et al., 1968). Subjects were presented with a stimulus
and had to rate its intensity on a 1–100 scale. The experimenters
found that after marking the scale, subjects often crossed it out
and repeated the procedure of choice anew. Lefebvre (2006)
demonstrated that these results could be analyzed in a scheme
of choice between positive and negative alternatives.

The Axiom of Repeated Choice is depicted in Fig. 2. When
there is no change in the internal variable S, choices are made

Fig. 2. Decision trees derived from the Axiom of Repeated Choice (a) when the
value of the internal variable remains constant at S, and (b) when the value of
the internal variable changes to S + �S.

according to decision tree (a): the positive alternative is chosen
with probability XS and the negative alternative with probability
1 − XS. When S grows by �S, decision tree (b) is applied. The
initial choice in tree (b) is similar to the choice in tree (a), but
if the negative alternative is chosen, there is a small probability,
�S, that the choice will be reconsidered.

It follows from tree (b) in Fig. 2 that the probability of choos-
ing the positive alternative when the internal variable changes
(XS+�S) is the sum of the probability of choosing the positive
alternative in the preliminary stage (XS) and of the joint probabil-
ity of choosing the negative alternative in the preliminary stage
(1 − XS), reconsidering the choice (�S), and finally choosing
the positive alternative (XS):

XS+�S = XS + (1 − XS) �SXS. (11)

As preference for the positive alternative at a global scale is
acquired, the internal variable stabilizes and �S → 0. By con-
sidering XS as a differentiable function with argument S and
assuming �S → 0, we obtain the following differential equation
(see Appendix A):

dX(S)

dS
= (1 − X(S))X(S). (12)

After solving Eq. (12) under condition X(0) = x1, we find that

X = Φx1 (S) = x1

x1 + (1 − x1) e−S
. (13)

Eq. (13) corresponds to Eq. (5) for bipolar choices, if x2 = e−S.
Analogously to Eqs. (5) and (8), Eq. (13) can be transformed to

B−

B+ = e−S r−

r+ , (14)

where ‘+’ corresponds to the positive alternative and ‘−’ to the
negative one. By finding the logarithms of the right and left sides
of Eq. (14), we arrive to the final equation:

ln
B−

B+ = ln
r−

r+ − S. (15)

This equation describes the relation between the frequencies of
choosing positive and negative alternatives, the frequencies of
their reinforcements, and the internal variable.

Let us now compare the Eq. (3′) (from the FS model) and
(15). If it is assumed that the logarithm base in Eq. (3′) is e and
ln bR = −S, and considering that S ≥ 0, it follows that the richer
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and leaner schedules are negative and positive, respectively. This
is the scenario where matching is biased toward the leaner sched-
ule and thus choices undermatch reinforcement. The polarity of
the alternatives may be different, in which case ln bR = S, which
implies that ln bR ≥ 0. This is the scenario where matching is
biased toward the richer schedule and thus choices overmatch
reinforcement.

4. The meaning of polarity

What does it mean for a lean or rich schedule to be “pos-
itive” or “negative”? In the original model of bipolar choice,
polarity indicated the desirability of an alternative in a larger,
ethical context. Prior research has shown that pigeons may
become sensitive to global contingencies of reinforcement that
are inconsistent with local contingencies, as when an alternative
is preferred in the long run but not immediately (Heyman and
Tanz, 1995; Sanabria et al., 2003). If polarity of alternatives sig-
naled long-term contingencies, it would be expected that choices
in Conc VI VI would be biased, relative to matching, in the direc-
tion that would optimize long-term reinforcement. Nonetheless,
Houston and McNamara (1981) demonstrated that, with the
exception of very extreme cases, overmatching optimizes rate
of reinforcement in Conc VI VI, whereas most research reports
undermatching patterns (Davison and McCarthy, 1988).

Another possibility is that matching is optimal at an evolu-
tionary scale, and thus the positive polarity of lean schedules
improves the Darwinian fitness of the undermatching organism.
Indeed, the notion that matching is innate has been advanced
(Gallistel et al., 2007). Because this hypothesis is hard to falsify,
we will not speculate in candidate mechanisms for the natural
selection of undermatching.

A third possibility involves the misattribution of reinforce-
ment. If reinforcers are occasionally attributed to the wrong
schedule, it would be expected that most misattributions would
favor the lean schedule, because most reinforcers are provided by
the rich schedule (Davison and Jenkins, 1985). Reinforcement
misattribution would thus yield undermatching. It is possible that
the polarity of alternatives reflects the attribution of reinforce-
ment: Positive alternatives would be those that are attributed
more reinforcement than they actually yielded.

The misattribution hypothesis makes informative, verifiable
predictions of choice behavior. For instance, if a few assump-
tions are made on how reinforcement operates on behavior that
precedes the effective response (Catania, 1971; Killeen, 1994),
misattribution explains why delays to changeover between alter-
natives decrease undermatching (Boelens and Kop, 1983; Shull
and Pliskoff, 1967). It cannot, however, explain why overmatch-
ing happens at all (Baum et al., 1999; but see Wearden, 1983).

In synthesis, there is no clear rule yet for assigning polarity
to alternatives. Assuming undermatching as the modal pattern
of choice in Conc VI VI, the model of bipolar choice predicts an
initial tendency to match choices to reinforcement, and the pro-
gressive acquisition of a tendency to allocate more behavior to
the lean (positive) schedule. This latter tendency may be driven
by long-term contingencies, evolutionary predispositions, or by
acquired errors in reinforcement attribution. Empirical research

is necessary to establish whether bias in matching is acquired
and why.

5. Prediction of local patterns of choice

We have demonstrated that the global pattern described by the
FS model may be derived from a simple choice mechanism that
learns to “doubt” before selecting one of the alternatives but not
the other. To the extent that a choice procedure yields the global
pattern predicted by the FS model, be it a discrete choice, con-
current schedules, or concurrent chain schedules of any kind,
the bipolar choice model can provide a plausible local choice
mechanism. Can the same mechanism describe local patterns of
choice? The data reported by Baum et al. (1999) provide an infor-
mative constraint to any model of local choice: Visit durations
to the preferred (rich) alternative, but not to the non-preferred
(lean) alternative, covary with relative rate of reinforcement. The
algorithm described in Fig. 2 would not yield this local pattern,
mainly because it does not incorporate the burst-pause pattern of
keypecking that yields a high autocorrelation of choices in con-
current schedules (Nevin and Baum, 1980). This system may
also need to incorporate MacDonall’s (1999, 2000; MacDonall
et al., 2006) insight that choice between concurrent schedules is
constituted by choices between staying in and switching from
each alternative. It is possible to conceive an undermatching
organism that stays in the leaner alternative with probability XS

(Fig. 2), but that occasionally reconsiders its choice of staying
in the richer alternative, with a probability of actually leaving
(�S) that negatively covaries with the rich rate of reinforcement.
Such organism would behave like Baum et al.’s pigeons.

Conceivability does not entail necessity, but then again, no
model is strictly necessary. Ours is no exception, but it may be
argued that, without further empirical constraints, there are too
many degrees of freedom in the model to be of any use. This does
not ring true, because we have shown that local patterns of choice
actually falsify a strict version of the model. A non-strict version
of the model could be the one in which a choice is made with
the probability XS only when Eq. (14) holds (Lefebvre, 2006);
if this correlation is infringed, an organism begins restoring it
by keeping the duration of visits to the lean alternative constant
and increasing or decreasing the number of visits to the rich
alternative as postulated in the bipolar model.

The model certainly needs to be developed to fully account
for data but, more importantly, it also needs to make unique pre-
dictions that permit its empirical validation. Let us propose one
prediction: If choice reconsideration is behaviorally expressed
as orienting or moving toward the operandum without its actual
activation, those actions should be evident in visits to one sched-
ule – maybe at the end of response bursts – and not in visits to
the other, and only during the acquisition phase. In Aparicio’s
(2001) barrier choice paradigm, we expect that, when short bar-
riers separate the alternatives and undermatching is observed,
rats would occasionally move toward the lever in the rich sched-
ule before climbing away, whereas the abandonment of the lean
schedule would be more resolute. If the height of the barriers
is raised and overmatching occurs, we expect that incomplete
motions would be evident in the lean, not in the rich schedule.
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Data on the topography of choice behavior is, unfortunately,
scant. We hope that the model described here motivates further
exploration.
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Appendix A. The model of bipolar choice is a
differentiable logistic function

Eq. (11) is an algebraic expression of the Axiom of Repeated
Choice, where XS is a given probability. Our next step is to
find a differentiable function X(S) that corresponds to Eq. (11)
and where X(0) = x1. The latter constraint signifies the exclusive
determination of choice by local contingencies when the internal
variable is zero.

We do not know in advance if, among an infinite number of
differentiable functions, there are such that can be approximated
by Eq. (11) with an infinitely small value in comparison with �S.
This infinitely small value is designated o(�S) and defined as
o(�S)/�S → 0, when �S → 0. If there is at least one function
of the type we search for, then for the small increase of S we can
write:

X(S + �S) = X(S) + (1 − X(S))X(S) �S + o(�S) (A.1)

or

�X(S)

�S
= (1 − X(S))X(S) + o(�S)

�S
. (A.2)

For the limit at �S → 0, we obtain differential equation (12) and
solve it for X(0) = x1. As a result, we obtain Eq. (13), which is a
special case of the model of bipolar choice, and confirm with a
direct test that it satisfies Eq. (A.1).
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